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Abstract 
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support cells while also allowing 
growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes 
of model and crop plants have facilitated cataloguing and characterization of many enzymes involved in cell wall syn-
thesis. Structural information has been generated for several important cell wall-synthesizing enzymes. Important 
tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycopro-
teins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specif-
ically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell 
wall synthesis system. Despite these advances, and often because of the new information they provide, many open 
questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that 
remain open, reviews the data supporting different hypotheses that address these questions, and discusses techno-
logical developments that may answer these questions in the future.

Keywords:  Cellulose, cellulose synthase complex, cell wall biosynthesis, glycosyltransferase, hemicelluloses, mixed-linkage 
glucan, pectins, plant cell wall, polysaccharide, secretion.

Introduction
Plant cells are surrounded by plant cell walls, a strong yet !ex-
ible polysaccharide-based extracellular matrix that supports 
plant cells and de"nes their shapes. Plant cell walls are composed 
of a hydrated network of polysaccharides, including cellulose, 
hemicelluloses, and pectins. Cell walls also contain proteins (San 
Clemente et al., 2022) and other molecules such as ions and 
phenolic compounds. Cellulose is made of β-(1,4)-linked glu-
cose chains that coalesce to form micro"brils. Hemicelluloses 
and pectins are heterogeneous classes of polysaccharides, col-
lectively called matrix polysaccharides. Hemicelluloses have a 
backbone of neutral sugars (e.g. glucose, xylose, and mannose), 
while pectin backbones include acidic sugars (particularly GalA). 
Both pectin and hemicellulose backbones can carry side chains 

of other sugars and are subject to acetylation, and pectins can 
be additionally modi"ed by methylation (Fig. 1) (Anderson and 
Kieber, 2020). Although cell wall composition can vary between 
species (Popper et al., 2011), cell types, developmental stages, 
or even subregions of the cell wall (Dauphin et al., 2022), cell 
walls are often classi"ed as primary or secondary. Primary cell 
walls are deposited before or during growth and are relatively 
!exible to allow turgor-driven plant cell expansion to facilitate 
plant growth. The primary cell wall of land plants, including 
the model plant Arabidopsis thaliana, is composed of cellulose, 
hemicellulose [mostly xyloglucan (XyG)], and pectins [homo-
galacturonan (HG), rhamnogalacturonan-I (RG-I), and RG-II] 
(Anderson and Kieber, 2020). Secondary cell walls are  deposited 
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in some mature, non-growing cells, such as the tracheary ele-
ments that conduct water in vascular plants. Secondary cell 
walls are usually depleted in pectins, contain di#erent hemicel-
luloses (e.g. xylans in Arabidopsis), and are enriched in lignin, 
a polyphenolic, hydrophobic compound (Meents et al., 2018). 
Under some conditions, such as during pathogen responses, cell 

walls may be supplemented with callose, a β-(1,3)-linked glucan 
(Chen and Kim, 2009). Callose is also an important part of estab-
lishing new cell walls during cytokinesis. A transient structure 
that is enriched in callose, called the cell plate, develops between 
dividing cells and eventually matures into a cell wall that divides 
the two child cells (Chen et al., 2018).

Fig. 1. Polysaccharides of the plant cell wall and uses of plant cell walls. Plant cells are surrounded by strong yet flexible polysaccharide-based plant 
cell walls. In the model plant, Arabidopsis thaliana, the primary cell wall is composed of cellulose, hemicelluloses [mostly xyloglucan (XyG) in primary cell 
walls and xylans in secondary cell walls], and pectins [e.g. homogalacturonan (HG) and rhamnogalacturonan-I (RG-I)]. Hemicellulose structures are after 
Pauly et al. (2013) and pectin structures are after Ropartz and Ralet (2020); the degree of acetylation and methylesterification of HG can vary and RG-I 
side chains are examples only since there is considerable diversity in these side chains. Plant cell walls are essential for plant growth and development, 
making them critical to both agriculture and forestry. Plant cell wall properties are particularly important for fruit ripening and for dietary fibre in food 
(Burton and Fincher, 2014). Plant cell walls make up wood; cellulose-based pulp and paper products; plant-based textiles, such as cotton, linen, rayon, 
and cupro; and cell wall material can provide feedstock for biofuels (Pauly and Keegstra, 2010). Hemicelluloses and celluloses can be converted into 
biofilms and biomaterials (Voiniciuc, 2022), and pectins are important gelling agents.
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Plant cell walls are essential for plant growth and develop-
ment, but they also provide important renewable bioproducts 
for human use and consumption (Fig. 1) (Pauly and Keeg-
stra, 2010; Burton and Fincher, 2014; Voiniciuc, 2022). With 

increasing interest in plant-based biofuels, renewable materials, 
and agricultural sustainability, plant cell wall research has inten-
si"ed over the last 30 years. The sequence of the A. thaliana ge-
nome (Box 1) (Arabidopsis Genome Initiative, 2000) revealed 

Box 1. Model organisms for studying plant cell walls

Arabidopsis: Arabidopsis thaliana (At) is a model genetic plant (Krämer, 2015) and the !rst fully-sequenced plant genome 
(Arabidopsis Genome Initiative, 2000). The elongating hypocotyl and root cells are the most commonly used systems to 
study primary cell wall synthesis since their rapid growth requires intense cell wall synthesis (Refregier et al., 2004). The 
ligni!ed secondary cell walls of the stem are an excellent model system for studying secondary cell wall synthesis (Meents 
et al., 2018), but do not constitute true wood since Arabidopsis is an annual plant.

Cotton: Gossypium hirsutum (Gh) ovule epidermal cells can differentiate into long !bre cells with an extremely cellulose-
rich (>90%) and lignin-poor secondary cell wall at maturity (Haigler et al., 2012). They make an excellent model system for 
studying cellulose synthesis because they can be cultured in vitro, isolated in large amounts for ‘omics or biochemical studies, 
and because both primary and secondary cell wall synthesis occur during !bre development. The paucity of molecular 
biology tools in cotton, relative to other model plants, makes mechanistic studies more challenging (Haigler et al., 2012).

Poplar: poplar, aspen, balsam, and cottonwood trees (Populus spp.) are an excellent model system for wood growth 
because they are fast-growing trees with strong genetic resources (Tuskan et al., 2006) and there is capacity to generate 
transgenic trees (Mellerowicz and Sundberg, 2008). Trees also form reaction wood, a specially reinforced secondary cell 
wall that counterbalances mechanical stress; therefore, reaction wood makes a useful model system for inducible cell wall 
synthesis (Tobias et al., 2020). Several Populus species are commonly studied, including Populus tremula×P. tremuloides 
(Ptt; hybrid aspen) and Populus trichocarpa (Ptr; black cottonwood); the !rst structural information on a functional CESA 
multimer was obtained from PttCESA8 (Purushotham et al., 2020), and Cas9/gRNA-targeted mutagenesis has recently been 
applied to study secondary cell wall biosynthesis via targeted disruption of PtrCESA genes (Xu et al., 2021).

Barley: although the model monocot Brachypodium distachyon (Bd) (Coomey et al., 2020; Hasterok et al., 2022), and 
crops such as Oryza sativa (Os; rice) and Zea maize (Zm; maize) are frequently used in cell wall research, Hordeum vulgare 
(Hv; barley) is also an important model system for plant cell walls because of its high levels of mixed-linkage (β-1,3 β-1,4) 
glucan (MLG) (Burton and Fincher, 2014).

Spruce: Picea abies (Norway spruce) is a model conifer and representative gymnosperm (vascular, non-seed plant) with a 
high-coverage genome sequence (Nystedt et al., 2013). Like angiosperm trees, gymnosperm trees also form reaction wood 
to counteract mechanical stress, but the composition and physiology of conifer reaction wood is distinct.

Marchantia and Physcomitrium: model non-vascular plants, including the model moss Physcomitrium patens (Pp) (Ye and 
Zhong, 2022) and the model liverwort Marchantia polymorpha (Mp) (Pfeifer et al., 2022), offer insight into the evolution of 
plant cell walls since comparative studies between these non-vascular models and vascular plants can uncover features of 
plant cell wall synthesis that may have been shared with their last common ancestor (Donoghue et al., 2021).

Model organisms for studying plant cell wall synthesis. Cartoon phylogeny of model plants used to study cell wall synthesis, 
with blue arrows approximately indicating key evolutionary innovations in plant cell wall synthesis. Phylogeny branch lengths 
and cartoon plants are not drawn to scale.
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that ~10% of the genome may be involved in cell wall synthesis 
(McCann et al., 2007) and dramatically expanded capacity to 
conduct functional genetic studies of these candidates. A suite 
of small molecule inhibitors (Larson and McFarlane, 2021) has 
allowed mechanistic studies of cellulose synthesis with pre-
cise control over timing, concentration, and reversibility. An 
elegant system to induce secondary cell wall synthesis in any 
cell type in Arabidopsis (Yamaguchi et al., 2011) (Box 3) has 
allowed researchers to track this process, which is usually con-
"ned to only a small subset of cells, buried deep within the 
plant. A key advance was the identi"cation of genes encod-
ing cellulose synthase (CESA) enzymes (Pear et al., 1996; 
Arioli et al., 1998). CESAs synthesize cellulose at the plasma 
membrane and are organized into large, multimeric cellulose 
synthase complexes (CSCs) (McFarlane et al., 2014). Struc-
tural information on CESAs has revealed that each CESA can 
synthesize a single β-(1,4)-glucan chain from UDP-glucose, 
and substrate addition to the growing glucan chain is coupled 
with its translocation through the CESA pore and into the 
apoplast (Purushotham et al., 2020) (Fig. 1). Live-cell imaging 
of !uorescent protein (FP)-tagged CESAs (Box 2) has docu-
mented that CSCs are motile in the plasma membrane (Pare-
dez et al., 2006), presumably to allow elongation of the glucan 
chain since cellulose becomes entangled in the cell wall matrix 
shortly after synthesis (Diotallevi and Mulder, 2007).

Matrix polysaccharides are typically more complex than 
cellulose and may incorporate multiple di#erent sugars and/
or linkages into their backbone, and the backbone may be 
modi"ed by additional sugar side chains, acetylation, and/or 
methylation (Fig. 1) (Anderson and Kieber, 2020). Most hem-
icellulose backbones are synthesized by multipass transmem-
brane domain (TM)-containing glycosyltransferases, which, 
like CESAs, have a cytosolic active site and are processive 
glycosyltransferases that couple polysaccharide synthesis with 
product translocation through a multipass TM pore (Scheller 
and Ulvskov, 2010). One exception may be xylan, a promi-
nent hemicellulose in Arabidopsis secondary cell walls, which 
seems to require only single-pass membrane proteins with 
their active sites in the Golgi lumen (Scheller and Ulvskov, 
2010), also called type-II glycosyltransferases. Pectin back-
bones and side chains for both pectins and hemicelluloses 
are also synthesized by type-II glycosyltransferases (Scheller 
and Ulvskov, 2010; Atmodjo et al., 2013). These glycosyltrans-
ferases have been characterized using combinations of ac-
tivity enrichment, homology searching, gain-of-function or 
loss-of-function assays, and heterologous expression (Amos 
and Mohnen, 2019). Fluorescent protein fusions and a suite 
of antibodies against cell wall polysaccharides have enabled 
researchers to track cell wall synthesis, secretion, and com-
position with subcellular accuracy (Pattathil et al., 2010). To-
gether, these tools revealed that most enzymes for pectin and 
hemicellulose synthesis act at the Golgi apparatus, then matrix 
polysaccharides are secreted to the cell wall via vesicle traf-
"cking (Ho#mann et al., 2021).

Despite these tremendous advances (and often because of the 
new information they provide), many open questions remain 
regarding plant cell wall polysaccharide synthesis. This article 
highlights some of these questions, reviews the data supporting 
di#erent hypotheses that address these questions, and discusses 
new developments that may answer these questions in the fu-
ture. Readers are directed to other excellent recent reviews on 
plant cell polysaccharide synthesis and cell wall remodelling 
(Anderson and Kieber, 2020; Gu and Rasmussen, 2022), poly-
saccharide inter-relationships in the cell wall (Cosgrove, 2022), 
and cell wall integrity sensing (Wolf, 2022).

1) What other proteins are required for cell 
wall polysaccharide synthesis?
The Arabidopsis genome encodes at least 566 glycosyltrans-
ferases, corresponding to >2% of all genes, and this propor-
tion is similar in other plant genomes (Drula et al., 2022). 
While some of these are involved in protein or metabolite 
glycosylation, many are involved in cell wall synthesis; how-
ever, only a small proportion of plant glycosyltransferases have 
been characterized in detail. Other proteins are also required 
for cell wall synthesis, including nucleotide sugar synthesis 
and interconversion enzymes that make the activated ‘building 
blocks’ for polysaccharide synthesis (Figueroa et al., 2021) and 
transporters to move nucleotide sugars into the Golgi lumen 
when necessary (Rautengarten et al., 2014), Golgi transport-
ers for glycosyltransferase cofactor ions (He et al., 2022), 
acetyltransferases and methyltransferases to modify polysac-
charides, plus transporters for their substrates (Temple et al., 
2022), and components for vesicle tra$cking of polysaccha-
rides and enzymes to the apoplast (Ho#mann et al., 2021). In-
deed, estimates indicate that ~10% of the Arabidopsis genome 
may encode proteins involved in cell wall synthesis (McCann 
et al., 2007). Previously successful strategies for characteriz-
ing these components include activity enrichment, homology 
searching, gain-of-function or loss-of-function assays, and 
heterologous expression (Amos and Mohnen, 2019). Several 
recent advances in plant cell wall synthesis underscore the 
strengths and weaknesses of these approaches and highlight 
key methods that may be applied to characterize other cell 
wall synthesis proteins.

Some glycosyltransferases have been identi"ed from cell 
types that are enriched in one cell wall polysaccharide. For 
example, nasturtium (Tropaeolum majus) seeds deposit massive 
amounts of the hemicellulose xyloglucan, which consists of 
a β-(1,4)-linked glucose backbone, substituted by xylose and 
other sugars (Fig. 1). A multipass TM-containing glycosyltrans-
ferase CELLULOSE SYNTHASE LIKE C (CSLC) was highly 
expressed in nasturtium seeds, and expression of its homologue 
AtCSLC4 in the yeast Pichea pastoris resulted in synthesis of 
β-(1,4)-glucan product (Cocuron et al., 2007), which could 
correspond to either cellulose or the xyloglucan  backbone 
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Box 2. Live-cell imaging of cellulose synthesis via 
fluorescently tagged cellulose synthases

Live-cell imaging of "uorescent protein (FP)-tagged 
cell wall synthesis enzymes has con!rmed that 
cellulose is made at the plasma membrane while matrix 
polysaccharides are synthesized at the Golgi apparatus 
(Hoffmann et al., 2021). Native promoter-driven 
N-terminal FP fusions have localized CESAs to three 
different subcellular locations: (i) cellulose synthase 
complexes (CSCs) (Paredez et al., 2006); (ii) Golgi 
bodies; and (iii) Small CESA compartments (SmaCCs) 
(Gutierrez et al., 2009), which are sometimes associated 
with microtubules and called microtubule-associated 
cellulose synthase compartments (MASCs) (Crowell et 
al., 2009). CSCs are small, FP–CESA-labelled puncta 
in the plasma membrane, which represent multiple 
FP-tagged CESAs incorporated into single complexes 
(Chen et al., 2014) and move with a characteristic, 
consistent speed along linear trajectories, which are 
particularly evident in sum projections of time series 
data. Individual CSCs can be identi!ed in kymographs 
as lines with consistent slopes, and the slope of the 
CSC trajectory in the kymograph can be measured to 
determine the speed of CSC movement in the plasma 
membrane (Verbančič et al., 2021), which directly 
re"ects the rate of CESA enzyme activity (Purushotham 
et al., 2020). Golgi bodies are large, bright, usually fast-
moving particles that are more frequently observed in 
the subcortical regions of the cell. SmaCCs are slightly 
larger and brighter than CSCs and most easily de!ned 
by their irregular movement in time-lapse imaging, 
represented as wavy lines with variable slopes in 
kymographs (Gutierrez et al., 2009). While it is likely that 
SmaCCs represent a heterogeneous population of both 
secretory and endocytic compartments (Hoffmann et 
al., 2021), they can be induced by various treatments, 
such as the cellulose synthesis inhibitor isoxaben, which 
causes FP–CESA depletion from the plasma membrane 
and an increase in SmaCCs (Gutierrez et al., 2009). FP–
CESA imaging is very sensitive to imaging conditions 
including temperature (Fujita et al., 2011), osmotic 
conditions (Crowell et al., 2009; Gutierrez et al., 2009), 
and even mounting and imaging conditions (Verbančič 
et al., 2021), and these and many other conditions can 
deplete CSCs from the plasma membrane and increase 
FP–CESA signal in SmaCCs. Studies of FP–CESAs have 
provided important insights into the mechanisms of 
cellulose synthesis (Paredez et al., 2006), CSC guidance 
(Gu et al., 2010; Chan and Coen, 2020), CSC assembly 
(Zhang et al., 2016) and traf!cking (Crowell et al., 2009; 
Gutierrez et al., 2009), and secondary cell wall synthesis 
(Gardiner et al., 2003; Watanabe et al., 2015).

Live cell imaging of cellulose synthesis via "uorescently 
tagged cellulose synthases. (A) Native promoter-driven 
N-terminal "uorescent protein fusions to several CESAs 
have been generated for AtCESA7 (Gardiner et al., 2003), 
AtCESA6 (Paredez et al., 2006), AtCESA3 (shown here) 
(Desprez et al., 2007), AtCESA1 (Miart et al., 2014), BdCESA3 
(Liu et al., 2017), and PpCESA5 (Tran et al., 2018). (B) In all 
cases, including rapidly expanding Arabidopsis hypocotyl 
epidermal cells shown here, the construct is localized 
to three distinct subcellular compartments, CSCs in the 
plasma membrane, plus SmaCCs and Golgi bodies in the 
cytoplasm. Time-average images (10 s intervals for 10 min 
shown here) highlight the linear trajectories in which CSCs 
move. Kymograph analyses display every time frame for a 
two-dimensional region (along the magenta line) and can 
be used to analyse CSC speeds in the plasma membrane, 
which are indicative of CESA enzyme activity (Verbančič 
et al., 2021). The cellulose synthesis inhibitor isoxaben 
(200 nm for 2 h shown here) rapidly depletes CSCs from the 
plasma membrane and induces CESA internalization into 
SmaCCs (Paredez et al., 2006); however, stress conditions 
can also induce this response (Verbančič et al., 2021).
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Box 3. A system for induced secondary cell wall formation in Arabidopsis

There are several challenges to studying secondary cell wall synthesis: most secondary cell wall development occurs 
deep within the plant body, obscuring these cells from high-resolution live-cell imaging techniques that have been 
applied to study primary cell wall synthesis; plus, in the model genetic plant Arabidopsis, secondary cell wall-synthesizing 
cells make up only a small proportion of tissues and are dif!cult to isolate for analyses. Insights into the regulation of 
secondary cell wall synthesis led to identi!cation of several master transcriptional regulators that were suf!cient to induce 
this process; however, expression of these transcription factors also induces cell death since this is the last step in 
development of xylem cells (water-conducting cells with secondary cell walls) (Kubo et al., 2005). Therefore, subsequent 
studies generated constructs for constitutive expression of these transcription factors fused to the herpes virus VP16 
activation domain and the steroid-binding domain of the rat glucocorticoid receptor (Yamaguchi et al., 2010). In this 
elegant system, the transcription factor is ubiquitously expressed, but retained in the cytosol until plants are exposed to 
exogenously applied glucocorticoid hormone (e.g. dexamethasone; dex), which releases the transcription factor, allowing 
it to move to the nucleus and trigger differential gene expression (Sablowski and Meyerowitz, 1998). Expression of one 
of these transcription factors, VND7, under the control of the dex-inducible system, allows secondary cell wall synthesis 
to be triggered in almost any cell type in Arabidopsis in large-scale and synchronized fashion. This system has allowed 
researchers to study transdifferentiation of epidermal cells into xylem tracheary element-like cells with helical secondary 
cell wall thickenings. This and another similar system (Oda et al., 2010) have provided important insights into gene 
regulation (Yamaguchi et al., 2011), secondary cell wall synthesis (Watanabe et al., 2015, 2018), and the mechanisms that 
pattern secondary cell wall thickenings (Oda and Fukuda, 2012; Schneider et al., 2017; H. Wang et al., 2022).

A system for induced secondary cell wall formation in Arabidopsis. (A) The VND7 transcription factor, fused to a VP16 
activation domain and the steroid-binding domain of the rat glucocorticoid receptor (GR), is ubiquitously expressed 
under the control of the 35S promoter. (B) Without exogenously applied glucocorticoid hormone (e.g. dexamethasone; 
dex) (left) the VND7 transcription factor is retained in the cytoplasm via HSP90 interaction with GR, so VND7-responsive 
genes are not transcribed. Upon dex addition (right), dex binds the GR domain, releasing it from HSP90 and allowing 
the VND7 fusion protein to move into the nucleus to activate transcription of VND-responsive genes. (C) Expressing this 
construct in plant cells that normally form a primary cell wall only (left) will induce treachery element-like secondary cell 
wall thickenings (right) upon dex exposure.
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(Fig. 1). Loss-of-function mutant analyses in Arabidopsis dis-
played no polysaccharide changes for cslc single mutants, but 
higher order mutants, including a quintuple mutant (a#ecting 
all "ve CSLCs in Arabidopsis), displayed complete loss of 
xyloglucan and mild growth phenotypes (Kim et al., 2020), 
consistent with other mutants completely lacking xyloglucan 
(Cavalier and Keegstra, 2006; Yu et al., 2022). Together, these 
studies highlight the power of using diverse systems to identify 
polysaccharide synthesis genes and combining this with mech-
anistic studies in model plants.

In a similar activity enrichment approach, two type-II glyco-
syltransferases, GAUT1 and GAUT7, were implicated in syn-
thesis of HG, a pectin made of α-(1,4)-linked GalA, which may 
be partially methylesteri"ed and acetylated (Fig. 1) (Sterling 
et al., 2006). Although these two glycosyltransferases can physi-
cally interact (Atmodjo et al., 2011), and loss of another GAUT 
family member resulted in HG defects (Bouton et al., 2002), 
the nature of their combined biosynthetic activity remained 
elusive until detailed biochemical assays were conducted on 
both GAUT1 and GAUT7 isolated from human HEK293F 
cells. When GAUT1 and GAUT7 were incubated with dif-
ferent lengths of GalA polymers as acceptors for di#erent 
times, longer acceptors were rapidly elongated, while shorter 
acceptors and de novo HG synthesis proceeded relatively slowly 
(Amos et al., 2018). Based on these data, the authors propose 
a two-phase model in which GAUT1 alone could initiate 
HG synthesis and make short products, but non-enzymatic 
activity of GAUT7 stabilized longer acceptors, allowing for 
increased reaction rates of larger polysaccharides (Amos et al., 
2018). These results emphasize that assessing glycosyltransferase 
function using a wide range of acceptors can reveal additional 
insights into the mechanisms of polysaccharide synthesis.

In the case where Arabidopsis does not usually synthesize a 
polysaccharide of interest, gain-of-function studies can be par-
ticularly helpful. For example, mixed-linkage glucan is a ma-
trix polysaccharide that is found in Poales (grasses including 
important staple crops rice, maize, wheat, and barley), but not 
detected in most other plants (Fry et al., 2008). Mixed-linkage 
glucan synthesis is intriguing because the glucose polymer is 
made of both β-1,3 and β-1,4 linkages that are distributed in 
a non-random, non-repeating fashion. Overexpressing mixed-
linkage glucan synthesis candidates, OsCSLF2 or OsCSLF4, 
in Arabidopsis resulted in mixed-linkage glucan synthesis 
(Burton et al., 2006). While other CSL family members (CSLJ 
and CSLH) may be involved (Little et al., 2018), CSLF6 is the 
major isoform based on strong mixed-linkage glucan-defective 
phenotypes when CSLF6 function was disrupted in wheat 
(Nemeth et al., 2010), rice (Vega-Sánchez et al., 2012), barley 
(Taketa et al., 2012; Garcia-Gimenez et al., 2020), or brachy-
podium (Bain et al., 2021). Recently, a medium-resolution 
cryoEM structure of HvCSLF6 isolated from insect (Sf9) cul-
ture cells (Purushotham et al., 2022), demonstrated that mon-
omeric HvCSLF6 alone synthesized both β-1,3 and β-1,4 
linkages of mixed-linkage glucan without the addition of other 

plant-derived factors (Purushotham et al., 2022). While gain-
of-function assays were critical in identifying mixed-linkage 
glucan synthases, the structure of HvCSLF6 provided essential 
information that answered many long-standing questions.

In some cases, con!icting data arise depending on the meth-
ods used to study glycosyltransferase function. For example, 
loss-of-function csld mutants revealed changes to root hair 
growth, cell plate maturation, and pollen tube growth, but no 
signi"cant changes in monosaccharide composition of ma-
trix polysaccharides (Yin et al., 2011), while immunolabelling 
detected changes to xyloglucan distribution in the cell wall 
(Galway et al., 2011). Heterologous expression of CSLD family 
members increased GDP-mannose utilization and incorpora-
tion into β-mannan, but no change in utilization of other sub-
strates (Yin et al., 2011). Together, these data implicated CSLD 
family members in hemicellulose synthesis, but data con!icted 
about which polysaccharides CSLDs might synthesize. In con-
trast, isolation of CSLD expressed in yeast (Saccharomyces cere-
visiae) provided compelling evidence that CSLDs synthesized 
a β-(1,4)-linked glucose, cellulose-like product (Yang et al., 
2020), consistent with catalytic domain-swap complementa-
tion experiments between CSLD3 and CESA6 (Park et al., 
2011; Yang et al., 2020). The authors propose a model in which 
CSLDs might synthesize a cellulose-like product, possibly in 
shorter and/or less crystalline fragments (Yang et al., 2020), 
particularly in cell types that require signi"cant !exibility and/
or in cellular regions where there are fewer microtubules to 
guide organized cellulose synthesis (Question 7), such as cell 
plates (Gu et al., 2016) or root hair tips (Park et al., 2011). The 
con!icting results from loss-of-function, gain-of-function, and 
characterization of CSLD3 activity in vitro underscore the im-
portance of using multiple methods to study glycosyltransfer-
ase function.

Beyond glycosyltransferases, substantial progress has been 
made characterizing the nucleotide sugar transporters, which 
move activated nucleotide sugars into the Golgi apparatus 
for use by type-II glycosyltransferases. An unbiased approach 
of simultaneously supplying nucleotide sugar transporters 
reconstituted in proteoliposomes with a wide range of pos-
sible nucleotide sugar substrates (Rautengarten et al., 2014) 
captured unique transporter dynamics (Rautengarten et al., 
2017) and identi"ed bifunctional transporters (Rautengar-
ten et al., 2014). Although potentially time-consuming and 
complex to interpret, these and similar unbiased experiments 
(Ruprecht et al., 2020; Ehrlich et al., 2021) avoid con"rmation 
bias by supplying a range of substrates in competitive assays. 
Such experiments can uncover previously unknown func-
tions of cell wall synthesis genes. Although similar sequence 
and structure suggest a conserved catalytic mechanism within 
each family of glycosyltransferases, proteins within one family 
can display di#erences in substrate speci"city (Amos and 
Mohnen, 2019; Ruprecht et al., 2020; Ehrlich et al., 2021; 
Drula et al., 2022) that may go undiscovered without unbi-
ased biochemical assays.
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Together, these advances highlight the value of conducting 
detailed characterization of proteins involved in cell wall syn-
thesis. Unfortunately, little structural information is available 
for plant glycosyltransferases (Rocha et al., 2016; Urbanowicz 
et al., 2017; Culbertson et al., 2018; Purushotham et al., 2020, 
2022; Prabhakar et al., 2023). Additional structural informa-
tion and structural modelling via AlphaFold (Jumper et al., 
2021) will help to fuel further predictions about glycosyl-
transferase mechanisms, interactions, and regulation (More-
men and Haltiwanger, 2019). Another limitation has been 
the incomplete availability of appropriate substrates to assess 
glycosyltransferase activity. Two relatively new approaches 
may address this limitation. First, analysis of isolates from the 
human gut microbiome identi"ed bacteria capable of cleav-
ing 20 out of 21 glycosidic linkages present in RG-II (Ndeh 

et al., 2017); further characterization of these and similar 
enzymes may allow controlled hydrolysis of plant cell wall 
material to generate custom substrates for glycosyltransferase 
assays. Secondly, synthetic glycan arrays (Ruprecht et al., 2017) 
coupled with functionalized nucleotide sugars for simple de-
tection (Ruprecht et al., 2020) can o#er a variety of substrates 
to puri"ed enzymes, allowing simultaneous and competitive 
screening of multiple substrates in a single reaction. Together 
with e#orts to create an Arabidopsis glycosyltransferase clone 
library (Xuan et al., 2021), plus expanding resources for com-
parative genomics and CRISPR technology to assess gene 
function in other plant species (Reynolds et al., 2022), these 
new technologies represent promising resources for identi-
fying and characterizing additional plant cell wall synthesis 
enzymes.

Fig. 2. Polysaccharide synthesis and regulation at the Golgi apparatus. Two non-mutually-exclusive models of matrix polysaccharide synthesis at the 
Golgi apparatus have been proposed (Question 2): sequential matrix polysaccharide synthesis and complex-mediated matrix polysaccharide synthesis. 
In the sequential model (left), backbone synthesis via backbone synthesis glycosyltransferases (GTs; magenta) occurs in earlier (more cis-) cisternae, 
while side chain synthesis (purple) and elaboration (blue & green) via side chain GTs occur in later (more trans-) cisternae. In the complex-mediated model 
(right), multiple components associate into a multiprotein complex to facilitate matrix polysaccharide synthesis. The most likely scenario is that different 
complexes are differentially distributed across cisternae, with backbone synthesis GTs (magenta) and side chain synthesis GTs and transporters (purple) 
associating in earlier cisternae, and side chain synthesis (purple) and elaboration components (blue & green) associating in later cisternae. Although 
cellulose synthase complexes (CSCs; yellow) are assembled in the Golgi apparatus, it also remains unclear (Question 3) whether distinct secretory 
vesicles are responsible for CSC and matrix polysaccharide secretion (left), or whether CSCs are packaged into the same secretory vesicles as matrix 
polysaccharides (right).
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2) Are matrix polysaccharides synthesized 
by complex-mediated or sequential 
synthesis?
Unlike many other biological polymers, polysaccharides are 
synthesized without a template; so how are proteins for ma-
trix polysaccharide synthesis organized within the Golgi appa-
ratus to ensure reproducibility? Furthermore, the plant Golgi 
apparatus is split into hundreds of highly motile mini-stacks 
per cell (Boevink et al., 1998). Each stack consists of multiple 
membrane-bound compartments (cisternae), organized from 
cis to trans, with the trans-most cisterna closest to the trans-
Golgi network (Fig. 2). Each Golgi stack probably has the full 
capacity to synthesize all cell wall polysaccharides, since mul-
tiple enzymes (Parsons et al., 2019) and products (Moore et al., 
1991; Zhang and Staehelin, 1992; Young et al., 2008; Wang 
et al., 2017) for synthesis of multiple polysaccharides localized 
to the same Golgi stacks. This raises questions as to how diverse 
polysaccharides are synthesized in the complicated milieu of 
enzymes and substrates in each Golgi stack. Two non-mutually-
exclusive hypotheses for matrix polysaccharide synthesis in the 
Golgi apparatus are (i) sequential polysaccharide synthesis and 
(ii) complex-mediated synthesis (Fig. 2) (Atmodjo et al., 2013; 
Ho#mann et al., 2021; Zabotina et al., 2021). In the sequential 
model, the enzymes for polysaccharide synthesis are distrib-
uted throughout di#erent Golgi cisternae, allowing backbone 
synthesis in the cis- and medial-Golgi, then side chain synthesis 
and elaboration in the medial- and/or trans-Golgi cisternae. In 
the complex-mediated model, multiple proteins required for 
synthesis of a single polysaccharide associate together for op-
timal functionality.

The sequential model of matrix polysaccharide synthesis 
predicts heterogeneous distribution of enzymes and polysac-
charides across di#erent cisternae, with proteins required for 
backbone synthesis and products representing relatively undec-
orated polysaccharide backbones enriched in cisternae towards 
the cis-Golgi, and polysaccharide products with more com-
plex side chains and proteins for their synthesis enriched in the 
trans-Golgi (Fig. 2). Consistent with this model, immunoTEM 
of sycamore maple (Acer pseudoplatanus) suspension cultured 
cells documented anti-xyloglucan labelling across medial- and 
trans-cisternae, plus the trans-Golgi network, but anti-fucose 
(the terminal side chain elaboration on xyloglucan) only in the 
trans-cisternae and trans-Golgi network (Zhang and Staehelin, 
1992). Similar patterns were also detected for pectins in maple 
(Zhang and Staehelin, 1992), for pectins and hemicelluloses in 
Arabidopsis (McFarlane et al., 2008; Young et al., 2008), and for 
hemicelluloses in secondary cell wall synthesis (Meents et al., 
2019). Indeed, xyloglucan xylosyltransferase XXT1 preferen-
tially localized to the cis-Golgi, putative galactosyltransferase 
MUR3 to the medial-Golgi, and fucosyltransferase FUT1 to 
the trans-Golgi (Chevalier et al., 2010), which is consistent 
with their sequential roles in synthesizing a xylose–galac-
tose–fucose side chain on xyloglucan. Recently, these results 

were corroborated by a combination of proteomics of free-
!ow electrophoresis separation of Golgi compartments, sup-
ported by super-resolution imaging of FP-tagged enzymes and 
immunoTEM of polysaccharide epitopes (Parsons et al., 2019). 
By analogy with N-glycoprotein processing enzymes, which 
are also spread across Golgi cisternae (Saint-Jore-Dupas et al., 
2006; Schoberer et al., 2009), these enzyme distributions across 
Golgi cisternae may serve to limit competition for substrates or 
to ensure the correct sequence of side chain elaboration.

The complex-mediated model of matrix polysaccharide 
synthesis predicts that polysaccharide synthesis proteins in-
teract within the same Golgi cisterna (Fig. 2). Interactions 
have been documented between proteins involved in pectin 
(HG) and hemicellulose (xyloglucan and xylan) synthesis. In 
HG synthesis, GAUT1 interacted with GAUT7 to localize to 
the Golgi apparatus (Atmodjo et al., 2011) and to e$ciently 
synthesize long HG backbones (Atmodjo et al., 2011; Amos 
et al., 2018). Pulldown assays documented interactions be-
tween GAUT1 and GAUT7 and with QUA3 (Atmodjo et al., 
2011), which is similar to QUA2, a HG methyltransferase (Du 
et al., 2020). Interestingly, qua2 mutants displayed reduced HG 
levels, but wild-type proportions of HG methylesteri"cation 
(Mouille et al., 2007; Du et al., 2020), suggesting that e$cient 
substrate channelling from glycosyltransferases to methyltrans-
ferases ensures appropriate levels of HG methylesteri"cation 
before secretion. This may be facilitated by a domain of un-
known function 1068 protein that interacts with both pectin 
glycosyltransferases and methyltransferases, and is required for 
pectin synthesis, but seems to have no hallmarks of enzyme 
activity itself (Lathe et al., 2021, Preprint). Interestingly, there 
is no reported evidence of interactions between pectin syn-
thesis enzymes RRT and RGGAT, which act together to al-
ternatively add rhamnose and GalA to the RG-I backbone, 
respectively (Amos et al., 2022). Interactions have been docu-
mented amongst xyloglucan glycosyltransferases, including 
backbone synthesis CSLC4, side chain synthesis xylosyltrans-
ferases XXT1, XXT2, and XXT5, and side chain elaboration 
glycosyltransferases MUR3 and FUT1 via multiple methods 
(Chou et al., 2012, 2015; Lund et al., 2015). Furthermore, the 
strong phenotypes of mur3 mutants (Kong et al., 2015) suggest 
that accumulation of xyloglucan with unusual side chains is 
more detrimental than complete loss of xyloglucan (Cavalier 
et al., 2008; Kim et al., 2020), suggesting that xyloglucan must 
be carefully regulated and e$ciently modi"ed.

There are several similarities between HG synthesis and syn-
thesis of xylan hemicelluloses, despite the very di#erent en-
zymatic reactions required, that imply that xylan may also be 
synthesized by enzyme complexes. Mutant phenotypes indi-
cated that IRX9/IRX9L (Lee et al., 2007), IRX10/IRX10L 
(Brown et al., 2009; Wu et al., 2009), and IRX14/IRX14L 
(Brown et al., 2007) were all required for xylan synthesis in 
Arabidopsis. IRX10L catalysed β-(1,4)-xylan backbone syn-
thesis (Urbanowicz et al., 2014), but glycosyltransferase  activity 
of IRX9 and IRX14 was not required (Ren et al., 2014). 
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 Heterologous expression detected interactions between homo-
logues of these proteins from wheat (Zeng et al., 2010) and as-
paragus (Zeng et al., 2016), but not Arabidopsis (Lund et al., 
2015). Since expression of all three proteins from asparagus 
was required for their e#ective targeting to the Golgi apparatus 
(Zeng et al., 2016), IRX9 and IRX14 might play analogous 
roles to GAUT7, though this remains to be determined.

The sequential and complex-mediated models of matrix 
polysaccharide synthesis are not mutually exclusive and may be 
integrated into a combined model. While protein complexes 
may exist to channel substrates into speci"c polysaccharides or 
to rapidly modify products before aggregation, di#erent com-
plexes may be distributed amongst di#erent Golgi cisternae 
(Zabotina et al., 2021). This could allow bifunctional or multi-
functional enzymes to synthesize multiple products if they are 
localized to di#erent Golgi cisternae where they encounter 
di#erent substrate availabilities, pH, or ion concentrations 
as established by di#erent transporters. For example, XXT1, 
which can add xylose to the glucan backbone during xyloglu-
can synthesis (Cavalier and Keegstra, 2006), can also use other 
substrates (Ehrlich et al., 2021) or add xylose to other acceptors 
(Ruprecht et al., 2020) in vitro, so localization of XXT1-con-
taining complexes to speci"c Golgi cisternae may help direct 
enzyme activity in vivo. This combined model is consistent 
both with interactions between xyloglucan synthesis enzymes 
(Chou et al., 2012, 2015; Lund et al., 2015), and with their dif-
ferential steady-state localization within Golgi stacks (Chev-
alier et al., 2010). Testing this combined model will require 
localization of multiple functional, tagged enzymes expressed 
at native expression levels using quantitative, high-resolution 
methods, such as immunoTEM and super-resolution micros-
copy.

3) How is the balanced synthesis of 
different polysaccharides achieved?
Within a single plant, cell wall composition may vary across 
tissue types, developmental timelines (Yang et al., 2016), and 
even regions of the cell wall (Dauphin et al., 2022), yet cell wall 
composition is relatively reproducible for individual plants and 
tissue types. So, how is cell wall composition controlled and 
how is matrix polysaccharide synthesis at the Golgi apparatus 
balanced with cellulose synthesis at the plasma membrane? One 
possibility is that matrix polysaccharides and CESAs might be 
packaged into the same secretory vesicles at the Golgi appa-
ratus (Question 4). Three other possible mechanisms to bal-
ance cell wall synthesis are transcriptional regulation, control 
of carbon !ux into cell wall synthesis, and feedback from cell 
wall integrity signalling mechanisms.

Transcriptional regulation of cell wall synthesis genes plays 
a role in regulating cell wall composition. For example, sec-
ondary cell wall synthesis is under complex transcriptional 
control (Taylor-Teeples et al., 2015), and ectopic expression 

of VND transcription factors is su$cient to induce secondary 
cell wall formation (Box 3) (Kubo et al., 2005; Yamaguchi et al., 
2010). Although transcriptional control of primary cell wall 
synthesis is less completely understood (Pedersen et al., 2023), 
genes involved in primary cell wall synthesis have been identi-
"ed based on co-expression relationships (Persson et al., 2005). 
However, transcriptional control of cell wall synthesis enzymes 
is insu$cient to explain all variation in cell wall composition. 
For example, some glycosyltransferases showed expression var-
iation across the Arabidopsis shoot apical meristem, but these 
were not strictly correlated with di#erences in cell wall com-
position (Yang et al., 2016), and similar inconsistencies were 
documented in maize coleoptiles (Okekeogbu et al., 2019).

Cell wall polysaccharide synthesis may be regulated by con-
trolling carbon !ux into cell wall precursors and/or via energy 
signalling mechanisms (Verbančič et al., 2018). UDP-glucose 
may be supplied to CESAs via sucrose synthase (SUS) or the 
combined activity of cytosolic invertase (CIV) and UDP-glu-
cose pyrophosphorylase (McFarlane et al., 2014). SUS can co-
fractionate with CESA activity in cotton (Amor et al., 1995) 
and Azuki bean (Vigna angularis) (Fujii et al., 2010), and SUS 
overexpression in hybrid poplar (Populus alba×grandidentata) 
xylem cells resulted in slightly increased cellulose synthesis 
(Coleman et al., 2009). However, RNAi targeting the main 
SUS isoforms in developing wood of hybrid aspen did not 
dramatically change growth or cell wall synthesis (Gerber et al., 
2014). Importantly, Arabidopsis sextuple sus mutants with no 
detectable SUS activity (Fünfgeld et al., 2022) displayed no sig-
ni"cant changes in plant growth, primary or secondary cell 
wall morphology, cellulose content, or UDP-glucose content 
(W. Wang et al., 2022), indicating that SUS is not essential for 
cell wall synthesis but may a#ect carbon partitioning into cell 
wall components (Gerber et al., 2014). On the other hand, 
double civ civ2 mutant seedlings displayed broad metabolic 
and transcriptional changes (Pignocchi et al., 2021) and had 
reduced crystalline cellulose and slower CESA speeds, but no 
changes to CSC density in the plasma membrane (Barnes and 
Anderson, 2018). These results suggest that CIV activity may 
be important for substrate supply during cellulose synthesis. 
However, substrate availability itself is not directly regulating 
CSC activity at the plasma membrane since UDP-glucose 
levels remained constant across carbon-limiting and carbon-
replete conditions, even as CSC activity at the plasma mem-
brane !uctuated (Ivakov et al., 2017), suggesting that energy 
signalling, rather than substrate availability, may be regulating 
cellulose synthesis. It remains unclear whether matrix polysac-
charide synthesis may be "ne-tuned via carbon availability in 
a similar fashion.

Cell wall integrity signalling has been described in plants 
(Wolf, 2022) and may o#er additional mechanisms by which 
plants can balance and/or modify cellulose and matrix poly-
saccharide content. Most work on cell wall integrity signalling 
has been focused on the initial perception of either chemical 
signals, such as damage-associated molecular patterns (Bacete 
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et al., 2018), or mechanical signals, such as changes in cell wall 
resistance to turgor (Bacete and Hamann, 2020). Research on 
plant responses to these signals has been focused on dramatic 
cell wall changes, such as total loss of xyloglucan (Kim et al., 
2020) or major defects in cellulose synthesis (Hématy et al., 
2007). Once the molecular mechanisms of cell wall signal-
ling are better characterized, it may become possible to test 
whether subtle cell wall changes might provide feedback to 
balance cell wall polysaccharide synthesis.

4) Are matrix polysaccharides and CSCs 
secreted via the same vesicles?
Matrix polysaccharide and cellulose synthesis could be coor-
dinated if Golgi-synthesized matrix polysaccharides are pack-
aged into the same post-Golgi vesicles as CSCs, since fusion of 
these vesicles with the plasma membrane would deliver matrix 
polysaccharides to the apoplast and CSCs to the plasma mem-
brane for cellulose synthesis (Fig. 2). Since CESAs seem to 
cycle between the Golgi and the plasma membrane (Question 
9; Fig. 3), this cycling could help balance matrix polysaccharide 
delivery with CESA regulation.

A series of meticulous double-labelling immunoTEM 
experiments detected both anti-xyloglucan and RabA4b in 
the same post-Golgi structures and co-localized RabA4b with 
SYP61 (Kang et al., 2011). Since CESA6 co-localized with 
SYP61 in immunoTEM (Drakakaki et al., 2012), these results 
provide indirect evidence that CESAs co-localize with ma-
trix polysaccharides in the same trans-Golgi network, but it 
is unclear whether individual vesicles that bud from the trans-
Golgi network carry both CSCs and matrix polysaccharide 
cargo. More recently, several approaches have isolated subpop-
ulations of membrane-bound compartments from plant cells 
to analyse their proteome and glycome, including !otation 
centrifugation (Okekeogbu et al., 2019), free-!ow electropho-
resis (Parsons et al., 2019), and a$nity puri"cation of SYP61 
(Drakakaki et al., 2012; Wilkop et al., 2019). Proteomic analysis 
of SYP61 a$nity-puri"ed membranes also detected CESA2, 
CESA3, and CESA6 (Drakakaki et al., 2012), and glycomic 
analysis of this fraction detected xyloglucan, pectins, and cell 
wall glycoproteins (Wilkop et al., 2019). Since similar pro-
teins and polysaccharides were detected by the other studies 
(Okekeogbu et al., 2019; Parsons et al., 2019), these results also 
imply that CESAs and matrix polysaccharides may be pack-
aged in the same post-Golgi compartments (Fig. 2). However, 
these analyses represent a homogenized population of subcel-
lular compartments, which could mask subpopulations with 
distinct cargo.

These systems-level studies also identi"ed proteins that 
may be involved in CESA and matrix polysaccharide traf-
"cking. For example, both the ECHIDNA complex (Gen-
dre et al., 2011, 2013) and the TRAPPII complex (Qi et al., 
2011; Rybak et al., 2014) have been implicated in secretory 

tra$cking from the Golgi, and components of both com-
plexes were identi"ed in SYP61 a$nity-puri"ed membranes 
(Drakakaki et al., 2012). While it seems that these compo-
nents play distinct roles in post-Golgi tra$cking (Boutté 
et al., 2013; Ravikumar et al., 2018), both complexes may be 
involved in cell wall secretion. Indeed, ech complex mutants 
were defective in matrix polysaccharide secretion (Gendre 
et al., 2013) and mistargeted polysaccharides to the vacuole 
(McFarlane et al., 2013), but CESA tra$cking has not yet 
been analysed in these mutants. Studying CESA and poly-
saccharide localization in mutants a#ecting TRAPPII com-
plex components is di$cult because knockout mutants are 
seedling lethal (Rybak et al., 2014), but small molecules af-
fecting subcellular tra$cking can overcome the issues of ge-
netic redundancy, pleiotropy, or lethality (Ma et al., 2022). 
CESTRIN is a small molecule that disrupted CESA traf-
"cking to the plasma membrane and a#ected both cellulose 
and matrix polysaccharide synthesis (Worden et al., 2014). 
Although CESTRIN treatment retained CESAs inside in-
tracellular compartments, matrix polysaccharide localiza-
tion was not assessed (Worden et al., 2014). Together, these 
results provide circumstantial, but inconclusive evidence that 
CESAs and matrix polysaccharides may be transported by 
the same post-Golgi compartments.

While high-resolution immunoTEM approaches can lo-
calize CESAs or polysaccharides to individual vesicles, la-
belling is sparse (Moore et al., 1991), so the probability of 
"nding a statistically signi"cant population of double-labelled 
vesicles is prohibitively small. On the other hand, biochem-
ical techniques have documented the proteomic and glycomic 
makeup of vesicle populations enriched from di#erent tissues 
and subcellular fractions, but the modest sensitivity of analyses 
means that samples must be pooled; therefore, these studies 
represent a homogenized sample population, which could 
mask subpopulations with distinct cargo and/or functions. 
Increased sensitivity of these analytical methods and applica-
tion of single-cell proteomics/metabolomics to study subcel-
lular compartments may be required to decisively address this 
question.

5) How are CESAs assembled into a CSC?
Cellulose is made at the plasma membrane by CSCs with 
6-fold symmetry (Wilson et al., 2021). Land plants encode 
multiple CESAs, and multiple CESAs assemble to form the 
CSC. The cryo-EM structure of PttCESA8 (Purushotham 
et al., 2020), freeze-fracture of CSCs (Nixon et al., 2016), and 
cellulose "bre measurements (Newman et al., 2013) best "t a 
hexamer-of-trimers structure for an overall 18mer CSC (Fig. 
3). However, the ancestral CSC was probably a homooligo-
mer, and an elegant model has been proposed to explain how 
heterooligomers could have arisen (Haigler and Roberts, 
2019). Indeed, heterologously expressed PpCESA5  synthesized 
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 cellulose  micro"bril-like structures (Cho et al., 2017) and ec-
topic PpCESA5 complemented an otherwise null CESA 
mutant (Li et al., 2022), implying that PpCESA5 can act as a 
homooligomer in vivo. Homotrimers of vascular plant PttC-
ESA8 (Purushotham et al., 2016) and GhCESA7 (X. Zhang 

et al., 2021) have also been isolated via heterologous expression 
and can make β-(1,4)-glucan in vitro. These data raise questions 
such as: are all CSCs obligate heterooligomers and how much 
!exibility is there in CSC assembly?

Di#erent CESA are unique, based on sequence, interac-
tions, and functions, implying that they may form obligate 
heterooligomers. Functionally, CESAs act non-redundantly; 
in Arabidopsis, CESA1, CESA3, and a CESA6-like (CESA2/
CESA5/CESA6/CESA9) were essential for primary cell wall 
synthesis (Desprez et al., 2007; Persson et al., 2007), and CESA4, 
CESSA7, and CESA8 were required for secondary cell wall syn-
thesis (Taylor et al., 2003), and similar requirements exist in other 
plants (Pancaldi et al., 2022). Furthermore, !uorescently tagged 
primary CESA6 and secondary CESA7 displayed di#erences in 
motility and subcellular tra$cking within the same cells (Wata-
nabe et al., 2018). Di#erent phosphorylation sites (Cruz et al., 
2019) and acylation sites (Kumar et al., 2022) may also confer 
distinct functions to di#erent CESAs. For example, phosphoryl-
ation di#erences may distinguish between primary CESA5 and 
CESA6 (Bischo# et al., 2011), while acylation di#erences may 
distinguish secondary CESA7 and CESA8 (Kumar et al., 2022).

Vascular plant CESAs cluster distinctly from other cellu-
lose synthases in phylogenetic analysis, and primary versus 
secondary CESAs cluster separately (Pancaldi et al., 2022). 
Plant CESAs have additional domains compared with bacte-
rial cellulose synthases and there is more sequence divergence 
in these regions, suggesting that they confer CESA functional 
speci"city. Domain-swap experiments have revealed complex 
relationships between these domains of CESA4, CESA7, and 
CESA8 (Kumar et al., 2016a; Hill et al., 2018a). Recombinantly 
expressed domains of CESAs from several species have the ca-
pacity to dimerize (Kurek et al., 2002; Olek et al., 2014) or 
trimerize (Vandavasi et al., 2015; Du et al., 2022) in vitro. It is 
unclear what contributions these interactions make in vivo with 
the added context of TMs and the complete three-dimensional 
structure of the full-length CESA. However, these interactions 
may contribute to CESA assembly into higher order structures 
(Wilson et al., 2021; Pedersen et al., 2023), particularly since 
these are disordered regions (Purushotham et al., 2020), so se-
quence divergence in these regions may govern how CESAs 
assemble into heterotrimers and/or 18mers.

Physical interactions have been detected among both pri-
mary (Desprez et al., 2007; Wang et al., 2008) and secondary 
CESAs (Taylor et al., 2003), and primary CESA1/3/6 and sec-
ondary CESA4/7/8 have been isolated in 1:1:1 ratios (Gon-
neau et al., 2014; Hill et al., 2014). However, these data do 
not rule out a hexamer-of-homotrimers model. The best ev-
idence supporting CESA heterotrimers comes from analysis 
of herbicide resistance-conferring mutations within the con-
text of CESA structure (Shim et al., 2018). Several isoxaben 
resistance-conferring mutations map to residues in the TMs 
of both CESA3 and CESA6 (Larson and McFarlane, 2021). 
Since the structure of PttCESA8 documented that TM7 from 
one CESA monomer interacts with TM4 and TM6 of another 

Fig. 3. The cellulose synthase complex (CSC) and its regulation. (A) 
Plant cellulose synthase (CESA) enzymes assemble into large, multimeric 
structures called the cellulose synthase complexes (CSCs). Most evidence 
is consistent with a hexamer-of-trimers model, in which the hexamer is 
made of six heterotrimers consisting of CESA1, CESA3, and CESA6-
likes (CESA2/CESA6/CESA5/CESA9) in Arabidopsis primary cell walls 
and CESA4, CESA7, and CESA8 in Arabidopsis secondary cell walls. 
This heterotrimeric interaction is formed in part by interactions between 
transmembrane domains (TMs) that form the transmembrane pore for 
β-glucan chain translocation across the membrane. Here, TM7 from 
one CESA interacts with TM4 and TM6 from another CESA to complete 
translocation pore formation. However, it is unclear whether CESAs 
form obligate heterotrimers or whether there is some flexibility in the 
hexamer-of-trimers model (Question 5). (B) Although CESAs are localized 
to the Golgi apparatus and Small CESA compartments (SmaCCs) in the 
cytoplasm, plus CSCs in the plasma membrane (Box 2), the biological 
function of CESA cycling between the Golgi apparatus and the plasma 
membrane remains unclear (Question 9). The steps of CSC exocytosis 
to the plasma membrane are described in detail in Zhu and McFarlane 
(2022), but the signal that activates CESA activity and triggers CSC 
motility in the plasma membrane remains unknown (Question 6). Once 
active in the plasma membrane, CSCs will synthesize β-glucan chains 
and these will coalesce into cellulose microfibrils. CSCs are guided in part 
by microtubules via interactions with CESA–microtubule linker proteins, 
such as CSI1. However, it remains unclear what proportion of CSCs 
are actively guided by microtubules (Question 7), since microtubule-
independent mechanisms of CSC guidance have also been described. 
While cellulose microfibrils already in the cell wall may play a role in 
microtubule-independent CSC guidance, other mechanisms remain 
possible (Question 7). The signals that trigger CESAs for endocytosis also 
remain uncharacterized (Question 8).
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monomer to form a complete pore for glucan chain transloca-
tion into the apoplast (Purushotham et al., 2020), the locations 
of these herbicide-resistant mutants suggest that CESAs as-
semble into heterotrimers, in which CESA3 and CESA6 TMs 
interact to form one pore and that isoxaben may interfere with 
this region of the CSC (Fig. 3).

On the other hand, there seems to be plasticity in CSC as-
sembly, including diversity in CSC structures and !exibility in 
CESA interactions, which suggests there may be some pliancy 
in CSC oligomerization. Although most CSCs observed by 
freeze-fracture displayed regular hexameric organization, there 
was signi"cant variation amongst individual CSCs (Reiss et al., 
1984; Nixon et al., 2016). These diverse CSC structures could 
re!ect di#erent CESA makeups, but could also be the result 
of CESA association with di#erent accessory proteins (such as 
those required for microtubule-mediated CSC guidance; Fig. 
3), di#erences in CESA activation status, or CSC disassembly 
before endocytosis (Questions 6–8). Pairwise interaction 
studies also suggested !exibility in CESA interactions; although 
CESAs displayed di#erences in their capacity to homomerize, 
all CESAs heterodimerized, even in combinations that mixed 
primary and secondary CESAs (Carroll et al., 2012). However, 
these experiments are di$cult to interpret since CESA traf-
"cking and motility were not assessed, so it is unclear whether 
these di#erent CESAs were incorporated into functional CSCs. 
The most compelling evidence for divergence from the hex-
amer-of-heterotrimers model in vascular plants comes from 
proteomic analysis of aspen (Populus tremula) during secondary 
cell wall synthesis. Developing xylem cells displayed a ratio 
of 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, which was 
exacerbated to 8:3:1 in developing tension wood, which syn-
thesize extremely thick cell walls to counterbalance mechan-
ical stress, suggesting that PtCESA8a/b might form homomers 
in vivo (Zhang et al., 2018). Taken together, these data imply 
that while the ‘typical’ CSC may be an 18mer of heterotrimers, 
there may be some !exibility in CSC assembly, particularly 
during unusual demands on cell wall synthesis.

Structural information on PttCESA8 (Purushotham et al., 
2016) and GhCESA7 (X. Zhang et al., 2021) homotrimers has 
generated testable hypotheses about CESA assembly into trimers 
and higher order assemblies (Wilson et al., 2021; Pedersen et al., 
2023). Some studies have already leveraged these data to generate 
domain-swap and point mutations of CESAs that may a#ect mul-
timerization (Kumar et al., 2022; Olek et al., 2023). Analysing these 
mutations with assays that directly assess CSC assembly, tra$cking, 
and activity at the plasma membrane (Huang et al., 2022, Preprint) 
may clarify the degree of !exibility in CSC assembly.

6) What activates CESAs in the plasma 
membrane?
The delivery of CSCs to the plasma membrane is well char-
acterized. Freeze-fracture experiments have demonstrated that 

CESAs assemble into CSCs in the Golgi apparatus, but do not 
seem to make cellulose until they reach the plasma membrane 
(Fig. 3) (Haigler and Brown, 1986). Live-cell imaging and mu-
tant analyses in Arabidopsis have implicated myosin XIK (W. 
Zhang et al., 2019, 2021), exocyst complex components (Zhu 
et al., 2018; W. Zhang et al., 2021), PATROL1 (a Munc13-
like protein), and CSI1 (Zhu et al., 2018) in CESA exocytosis. 
Together, these studies have established an intricate timeline 
of CSC delivery to the plasma membrane (Zhu and McFar-
lane, 2022). However, after CSCs were delivered to the plasma 
membrane, they did not immediately begin to synthesize cel-
lulose and remained immotile for an additional ~80 s (~10% 
of their total lifetime in the membrane; see Question 9). This 
pause continued even after components associated with vesicle 
tra$cking dissociated (Huang et al., 2022, Preprint), suggest-
ing that this pause is related to activation of CSCs after they 
are delivered. Together, these data imply that CSCs must be 
somehow ‘activated’ once they reach the plasma membrane, 
but the question remains: what triggers CESA activity in the 
plasma membrane?

One hypothesis is that biochemical conditions must be suit-
able for CESA activation, such as substrate concentrations or 
a primer for cellulose synthesis. Substrate availability is not 
likely to be controlling CESA activity, since UDP-glucose 
levels were stable within cells, even as cellulose synthesis !uc-
tuates with carbon availability (Ivakov et al., 2017) (Ques-
tion 2). Biochemical evidence implicated glucose-linked 
sterols in initiating cellulose synthesis in membrane fractions 
from cotton "bres (Peng et al., 2002). However, PttCESA8 
isolated from either P. pastoris (Purushotham et al., 2016) or 
insect-derived Sf9 culture cells (Purushotham et al., 2020) can 
synthesize β-glucan in vitro when supplied with only UPD-
glucose and Mn2+, indicating that no additional plant-derived 
factors are required for PttCESA8 activity. Furthermore, 
mutants a#ecting both UDP-Glc:sterol glycosyltransferases 
encoded by Arabidopsis displayed wild-type levels of cellulose 
(DeBolt et al., 2009), suggesting that a primer is not strictly 
necessary for cellulose synthesis. A third possibility is that the 
initial stages of cellulose synthesis might be slow until the 
product reaches a length that can be stabilized in the trans-
location pore, after which the rate of synthesis could reach a 
steady state.

Alternatively, a signalling molecule might be required to ini-
tiate cellulose synthesis. In bacteria, cellulose synthesis required 
cyclic-di-GMP (Ross et al., 1987), and the crystal structure 
of a bacterial (Rhodobacter sphaeroides) cellulose synthase docu-
mented that cyclic-di-GMP binds to the PilZ domain to re-
lease a ‘gating loop’ (Morgan et al., 2014). Although the PilZ 
domain is absent from plant CESAs, an ‘FTVTxK region’ that 
seems to be analogous to the ‘gating loop’ of bacterial cellu-
lose synthase was poorly resolved in the PttCESA8 structure, 
implying that it may be a !exible region (Purushotham et al., 
2020). However, mutations a#ecting this ‘FTVTxK region’ in 
AtCESA7 and PpCESA5 still provided partial functionality 
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(Slabaugh et al., 2016; Burris et al., 2021), so it remains unclear 
whether the ‘gating loop’ is strictly necessary for plant CESA 
regulation.

Phosphorylation is another signal that could activate 
CESAs, since it is rapid and reversible, and phosphorylation 
sites have been detected on several Arabidopsis CESAs (Cruz 
et al., 2019). Importantly, mutations abolishing putative phos-
phorylation sites (S/T→A) or generating phosphomimic 
sites (S/T→D/E) altered CESA motility in the plasma mem-
brane (Chen et al., 2010, 2016; Bischo# et al., 2011; Sánchez-
Rodríguez et al., 2017), implying that phosphorylation can 
a#ect CESA activity. None of these phosphosite mutations 
completely abolished CSC activity, suggesting that either 
other phosphorylation sites (or combinations of sites) remain 
to be tested, or else phosphorylation does not strictly acti-
vate CESAs, but rather it can "ne-tune CESA activity in the 
plasma membrane.

In the future, systematically dissecting the combined func-
tion of previously identi"ed CESA phosphosites may deci-
sively address whether phosphorylation can activate CESAs, 
but an alternative approach is to identify kinases that may act 
upon CESAs. Currently, BIN2 is the only candidate kinase for 
CESA phosphorylation; however, results implied that BIN2-
mediated phosphorylation decreased CESA1 activity (Sán-
chez-Rodríguez et al., 2017), making it an unlikely signal for 
CSC activation in the plasma membrane. Several other plasma 
membrane-spanning kinases have been implicated in cell 
wall synthesis and cell wall signalling, but the mechanisms by 
which they a#ect cellulose synthesis remain unknown (Wolf, 
2022). Identifying and functionally assessing other reversible 
post-translational modi"cations of CESAs (such as ubiquiti-
nation; Question 8) may provide further insight into CESA 
activation.

7) How are CSCs guided independently 
of microtubules, and why are multiple 
mechanisms governing CSC movement in 
the plasma membrane?
Co-alignment between cellulose "bres and cortical microtu-
bules was described almost 60 years ago (Ledbetter and Porter, 
1963), leading to several hypotheses about how microtubules 
in the cell cortex could guide CSCs in the plasma membrane 
(Emons et al., 2007). CSCs move in ordered arrays (Box 2) that 
co-align with microtubules (Paredez et al., 2006), and strong 
evidence for direct, microtubule-mediated guidance was pro-
vided by characterization of several proteins that interacted 
with CESAs and microtubules, including CSI1, CC1, and 
TTLs (Gu et al., 2010; Li et al., 2011; Bringmann et al., 2012, 
Endler et al., 2015; Kesten et al., 2019a, 2022). Mutations af-
fecting these components displayed reduced cellulose synthesis 
and disorganized CSC trajectories in the plasma membrane 
(Gu et al., 2010; Li et al., 2011; Bringmann et al., 2012; Endler 

et al., 2015; Kesten et al., 2019a, 2022). Additionally, changes 
to cellulose synthesis organization via inhibitors or disrupt-
ing CESA-interacting proteins a#ected cortical microtubule 
array organization (Himmelspach et al., 2003; Chu et al., 2006; 
Paredez et al., 2008; Liu et al., 2016; Schneider et al., 2022), 
providing further support for a physical interaction between 
CSCs and microtubules (Fig. 3). However, even in the absence 
of individual CESA–microtubule linker proteins, or under 
other conditions disrupting cortical microtubule organization, 
cellulose synthesis recovered into an ordered array in models 
of cellulose deposition (Emons and Mulder, 2000) and during 
both primary (Himmelspach et al., 2003; Sugimoto et al., 2003; 
Baskin et al., 2004; Paredez et al., 2006; Bringmann et al., 2012) 
and secondary cell wall deposition (Schneider et al., 2017). Re-
cent live-cell imaging in Arabidopsis documented changes in 
CSC trajectories independent of co-localization with cortical 
microtubules (Chan and Coen, 2020; Duncombe et al., 2022), 
implying that a microtubule-independent mechanism of CSC 
guidance may also exist. These data prompt two questions: how 
are CSCs guided independently of microtubules, and why are 
multiple mechanisms governing CSC movement in the plasma 
membrane?

One hypothesis for microtubule-independent CSC guid-
ance is that components of the cell wall might in!uence 
CSC trajectories. For example, previously deposited cellulose 
micro"brils might interact with nascent glucan chains emerg-
ing from the CSC. Indeed, mild cellulase treatment partially 
disrupted microtubule-independent CSC guidance (Chan and 
Coen, 2020). Other plasma membrane-localized proteins with 
an extracellular domain displayed signi"cantly reduced lateral 
mobility in the plasma membrane, and this e#ect was alleviated 
when the plasma membrane–cell wall interface was disrupted 
(Feraru et al., 2011; Martinière et al., 2012). These results imply 
that many proteins, not just CESAs, may interact with the cell 
wall as they move in the plasma membrane. In contrast to this 
hypothesis, ordered cellulose synthesis recovered after disrup-
tion of both microtubule organization and organized cellulose 
synthesis (Himmelspach et al., 2003).

It is also possible that other cell wall components, such as pec-
tins and/or hemicelluloses, could in!uence CSC movement. 
For example, loss of a rhamnose biosynthesis enzyme, RHM1, 
which is required for synthesis of RG-I pectins, results in cell 
twisting (Sa#er et al., 2017). Cell twisting is also a common 
phenotype of microtubule disorganization, presumably due to 
cellulose disorganization (Furutani et al., 2000); however, mi-
crotubule organization was una#ected in rhm1 mutants (Sa#er 
et al., 2017), suggesting that changes to cellulose organization, 
independent of microtubule organization, may be causing 
the twisting phenotype in RG-I-defective plants. Similarly, 
changes to HG synthesis caused changes to cellulose synthesis, 
cellulose organization, and CSC trajectories (Du et al., 2020), 
implying a relationship between pectins and organized cellu-
lose synthesis. However, HG defects also resulted in changes 
to microtubule organization (Du et al., 2020), so it is unclear 
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whether the cellulose defects in these mutants are a secondary 
consequence of changes to microtubule organization, or a pri-
mary consequence of changes in the organization of cellulose 
synthesis. Considering hemicellulose-mediated CSC guidance, 
xylan was enriched at the borders of secondary cell wall thick-
enings and was required for pit formation by excluding cellu-
lose (and presumably CESAs) from these developing regions 
(H. Wang et al., 2022). Similarly, primary cell wall xyloglucan-
defective xxt1 xxt2 mutants displayed reduced and disorgan-
ized cellulose synthesis (Xiao et al., 2016). Interestingly, xxt1 
xxt2 ktn1 triple mutants, defective in both xyloglucan synthesis 
and microtubule organization, were seedling lethal (Zhao et al., 
2019). These data suggest a synergistic interaction between mi-
crotubule organization and xyloglucan synthesis, which would 
be consistent with a hemicellulose-mediated mechanism of 
microtubule-independent CSC guidance. However, interpret-
ing these results is complicated by feedback between cortical 
microtubule organization and cellulose synthesis (Himmel-
spach et al., 2003; Chu et al., 2006; Paredez et al., 2008; Liu 
et al., 2016; Schneider et al., 2022).

An alternative hypothesis is that the plasma membrane might 
in!uence microtubule-independent CSC guidance. There is ev-
idence that both primary and secondary CESAs can be acylated 
in Arabidopsis (Hemsley et al., 2013; Kumar et al., 2016b, 2022), 
which should a#ect their association with membranes; therefore, 
a heterogeneous lipid environment could guide CSC trajecto-
ries. Indeed, sterol synthesis mutants displayed cellulose-de"cient 
phenotypes (Schrick et al., 2004). However, it is unclear whether 
these phenotypes are due to changes in CSC movement in the 
plasma membrane, or whether CESA endocytosis and recycling 
are a#ected (Question 9), since genetic or pharmacological dis-
ruption of sterols a#ected endocytosis (Men et al., 2008).

Whatever the mechanism of microtubule-independent 
CSC guidance, it seems that microtubule-mediated guidance 
can ‘over-rule’ microtubule-independent guidance (Chan and 
Coen, 2020). Therefore, microtubule-mediated CSC guidance 
may be particularly important when the orientation of cellu-
lose deposition must be reorganized. For example, microtu-
bule trajectories underwent cell-wide reorientation over time 
(Chan et al., 2010), presumably to produce multilamellar cell 
walls in which newly synthesized cellulose is deposited at an 
angle relative to previously synthesized micro"brils. Similarly, 
microtubule-mediated CSC realignment played an important 
role during the early phases of secondary cell wall patterning, 
but became dispensable in the later stages (Schneider et al., 
2017), implying that the microtubule-mediated CSC guidance 
may be particularly important during developmental transi-
tions. Microtubule reorientation is also important during stress 
responses, including mechanical stress (Hamant et al., 2008; 
Schneider et al., 2022) and salt stress (Endler et al., 2015;  Kes-
ten et al., 2019a, 2022). Therefore, microtubule reorientation 
coupled to microtubule-mediated CSC guidance could allow 
plant cells to reorganize cellulose synthesis to reinforce the cell 
wall as a mechanism to counteract stress.

Future experiments will be required to directly test which 
components contribute to microtubule-independent CSC 
guidance. For example, live-cell imaging of !uorescently 
tagged CSC trajectories in the plasma membrane in lipid-dis-
rupted conditions and/or imaging of point mutations a#ecting 
CESA acylation (Hemsley et al., 2013; Kumar et al., 2016b, 
2022) is required to test whether the lipid environment can 
contribute to CSC guidance. Similar experiments will be re-
quired to test whether di#erent cell wall components are di-
rectly required for microtubule-independent CSC guidance. 
Combining mild microtubule depletion from the cell cortex 
(Chan and Coen, 2020) with super-resolution imaging of 
!uorescently tagged CSCs (Duncombe et al., 2022) may pro-
vide additional insights into microtubule-independent CSC 
behaviour. Once the molecular mechanisms of microtubule-
independent CSC guidance have been established, it will be 
possible to evaluate the biological importance of this guidance 
mechanism. In the meantime, the importance of microtubule-
mediated CSC guidance is becoming clearer, particularly in 
studies of complex cell shapes, such as leaf epidermal pavement 
cells (Bidhendi et al., 2019; Schneider et al., 2022).

8) What signals trigger CESA endocytosis?
When their lifetime in the plasma membrane is complete, 
CESAs are endocytosed (Fig. 3). Live-cell imaging, mutant 
characterization, and proteomics have implicated clathrin-
mediated mechanisms in CESA endocytosis (Bashline et al., 
2013, 2015; Sánchez-Rodríguez et al., 2018; Dahhan et al., 
2022). Although the timing of clathrin-mediated endocytosis 
has been analysed in detail (Wang et al., 2020), these compo-
nents have not been co-localized with CESAs in time-course 
experiments and it remains unclear whether a complete CSC 
may be endocytosed or whether the CSC disassembles into 
trimers or monomers before endocytosis (Zhu and McFarlane, 
2022). Because clathrin-mediated endocytosis components as-
semble as non-motile puncta in the plasma membrane (Wang 
et al., 2020), CSCs must pause in the plasma membrane be-
fore they can undergo endocytosis. However, the molecular 
mechanisms mediating this pause are unclear, and the question 
remains: what signals trigger CESAs for endocytosis?

Signals that might initiate CESA enzyme activity in the 
plasma membrane (Question 6) could presumably be reversed 
to inactivate CESAs before endocytosis. For example, if phos-
phorylation increases CESA activity, dephosphorylation could 
decrease activity; however, CESA phosphosite mutations mod-
ulated CSC activity without a dramatic e#ect on CESA local-
ization (Chen et al., 2010, 2016; Bischo# et al., 2011), implying 
that other signals might target CESAs for endocytosis. The 
search for these signals is complicated by the variety of stresses 
that depleted CESAs from the plasma membrane and induced 
CESA accumulation in SmaCCs, including treatment with 
cellulose biosynthesis inhibitors (Box 2) (Paredez et al., 2006; 
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Crowell et al., 2009; Gutierrez et al., 2009; McFarlane et al., 
2021), salt stress (Endler et al., 2015; Kesten et al., 2019a, 2022), 
osmotic pressure (Crowell et al., 2009; Gutierrez et al., 2009; 
Fujimoto et al., 2014), protein synthesis inhibitors (Crowell 
et al., 2009; Hill et al., 2018b), fungal elicitors (Kesten et al., 
2019b), mechanical stress (Schneider et al., 2022), and even 
stress induced during CESA imaging protocols (Verbančič 
et al., 2021). Since most of these treatments were e#ective 
within minutes, it is assumed that the increased CESA signal in 
internal compartments, such as SmaCCs, is the result of endo-
cytosis (Box 2), rather than a block in protein secretion (Ho#-
mann et al., 2021). It is di$cult to imagine signalling pathways 
that could integrate all of these conditions to e#ectively regu-
late CESA endocytosis on such a short time scale.

Interestingly, two independent proteomics studies detected 
CESA ubiquitination (Johnson and Vert, 2016; Grubb et al., 
2021). Plasma membrane proteins undergo ubiquitin-medi-
ated changes in subcellular localization (Arora and van Damme, 
2021), suggesting that CESA localization could also be regu-
lated via ubiquitination. Intriguingly, the TASH3 subunit of 
the TPLATE adaptor-like complex for clathrin-mediated en-
docytosis interacted with ubiquitin (Grones et al., 2022) and 
OsTASH3 interacted with OsCESA4 (Sánchez-Rodríguez 
et al., 2018); however, it is unclear whether this interaction is 
dependent upon OsCESA4 ubiquitination.

Whatever the signal for CSC pausing and subsequent CESA 
endocytosis, it is likely that glucan chains emerging from the 
CSC must be cleaved before endocytosis (Delmer, 1999). A 
prime candidate for this activity is KORRIGAN (KOR), a 
transmembrane protein required for cellulose synthesis in both 
primary (Nicol et al., 1998) and secondary cell walls (Szyjano-
wicz et al., 2004). Puri"ed Brassica napus KOR hydrolysed 
non-crystalline cellulose, but not crystalline cellulose or hemi-
celluloses (Mølhøj et al., 2001), implying that it could act on nas-
cent glucan chains as they emerge from active CESAs without 
hydrolysing crystalline cellulose in the cell wall. Furthermore, 
KOR has a TM and interacted with CESAs (Vain et al., 2014), 
indicating that it probably acts at the plasma membrane, rather 
than in the cell wall. kor1 mutants displayed similar phenotypes 
to mutants a#ecting CESA endocytosis (Bashline et al., 2015; 
Sánchez-Rodríguez et al., 2018), including increased CSC 
density in the plasma membrane and decreased CSC speed 
(Paredez et al., 2008; Vain et al., 2014). Upon treatment with 
cellulose biosynthesis inhibitors that normally induce CESA 
internalization into SmaCCs, less intracellular CESA signal was 
detected in kor1 mutants (Vain et al., 2014), speci"cally impli-
cating KOR in CESA endocytosis. Alternatively, KOR could 
be involved in removing tensional stress during micro"bril for-
mation (Delmer, 1999).

Future experiments identifying the signals that can trigger 
CESA endocytosis will probably overlap with experiments 
designed to elucidate the mechanisms of CESA activation 
(Question 7). Proteomics approaches may address whether 
CESAs are ubiquitinated, and analysis of !uorescently 

tagged CESAs carrying mutations a#ecting potential ubiq-
uitination sites may be able to test whether CESA ubiquiti-
nation can a#ect CSC assembly, tra$cking, or activity. These 
mutants could also be used to directly test whether CCESA 
ubiquitination a#ects its interaction with components of 
clathrin-mediated endocytosis (Grones et al., 2022). Further 
studies of the mechanisms that regulate CESA endocytosis 
may also shed light on the function of KOR in cellulose 
synthesis.

9) Why is a large population of inactive 
CESAs retained in the Golgi and why 
do CESAs cycle between the plasma 
membrane and the Golgi apparatus?
A signi"cant proportion of CESAs in a cell are retained in the 
Golgi apparatus, and only a fraction of CESAs are actively syn-
thesizing cellulose at the plasma membrane (Box 2) (Paredez 
et al., 2006; Crowell et al., 2009; Gutierrez et al., 2009; Wata-
nabe et al., 2015). This localization pattern is distinct from most 
plasma membrane-localized proteins and prompts the ques-
tion: why is such a signi"cant proportion of CESAs retained in 
the Golgi apparatus, even when cellulose synthesis rates at the 
plasma membrane are high?

There are two possible trivial explanations for this phenom-
enon. First, the !uorescent protein tag could interfere with 
CESA tra$cking. However, these constructs complemented 
their corresponding mutants (Gardiner et al., 2003; Paredez 
et al., 2006; Desprez et al., 2007; Miart et al., 2014), and both 
freeze-fracture (Haigler and Brown, 1986) and proteomics 
experiments from Arabidopsis, maize, and pine (Parsons et al., 
2012, 2013; Nikolovski et al., 2014; Heard et al., 2015; Okeke-
ogbu et al., 2019) have detected untagged CESAs in the Golgi 
apparatus. Secondly, CESAs could take an unusually long time 
to mature before secretion to the plasma membrane. During 
time-course studies of VND induction (Box 3), secondary 
cell wall CESA transcripts increased within 4 h (Yamaguchi 
et al., 2011), CESA7 protein was detectable within 6 h, and 
new CESA7 proteins reached the plasma membrane within 
8 h (Watanabe et al., 2018). These data are similar to reported 
maturation kinetics for other plasma membrane-localized pro-
teins (Boutté et al., 2013), which are not dual localized to the 
Golgi and plasma membrane. Therefore, it seems likely that 
there is a biological explanation for CESA localization in the 
Golgi apparatus.

CESAs would also be detected in both the Golgi and the 
plasma membrane if they are cycling between these two loca-
tions; this hypothesis predicts that CESA lifetime in the plasma 
membrane should be much shorter than the total lifetime 
of CESA proteins in the cell. Indeed, CESA1, CESA3, and 
CESA6 are sustained for several days in cycloheximide-treated 
Arabidopsis seedlings (Hill et al., 2018b), although shorter 
lifetimes have been reported for GhCESA1 in cotton "bres 
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(Jacob-Wilk et al., 2006). Tracking CSCs in the plasma mem-
brane documented average lifetimes of 7–15  min (Paredez 
et al., 2006; Sampathkumar et al., 2013). The degree of po-
lymerization of cellulose has been reported from 250 up to 
10 000 glucosyl units (Klemm et al., 2005), but many tech-
niques and samples converge on values of ~3000–5000 (Hallac 
and Ragauskas, 2011). Since one glucose molecule is ~8.6 Å 
(BNID 110368; Milo et al., 2009), a degree of polymeriza-
tion of 3000–5000 would be roughly equivalent to a cellulose 
polymer of 2500–4500 nm. Mean CSC speeds in the plasma 
membrane ranged from 150 nm min–1 to 500 nm min–1 for 
AtCESA6 (Paredez et al., 2006), AtCESA7 (Watanabe et al., 
2015), BdCESA3 (Liu et al., 2017), and PpCESA5 (Tran et al., 
2018). Assuming 250  nm min–1, a CSC would synthesize a 
chain of 2500–4500 glucose molecules within 10–18 min, and 
even the largest reported values (~14 000) would result in a 
CSC lifetime under 1  h, which is still orders of magnitude 
shorter than CESA protein lifetime (Hill et al., 2018b). There-
fore, these data imply that CESAs may be reused as they cycle 
between being active CSCs in the plasma membrane and inac-
tive CESAs in the Golgi apparatus, and this cycling may regu-
late the length of cellulose "bres.

Interestingly, in freeze-fracture studies of the moss Funaria 
hygrometrica, only 75% of CSC-like particles had a clear 
‘rosette-like’ structure with 6-fold symmetry (Fig. 3) and the 
remaining 25% of CSC-like particles seemed to be in various 
states of disassembly (e.g. six subunits in an ‘open circle’ con-
formation or less than six subunits), which may represent CSCs 
in the process of being endocytosed or recycled (Reiss et al., 
1984). Several endocytosis-defective mutants showed increased 
CESA density, but decreased CESA motility in the plasma 
membrane, and decreased cellulose content (Bashline et al., 
2015; Sánchez-Rodríguez et al., 2018). Furthermore, mutants 
that are defective in CSC tra$cking from the Golgi to the 
plasma membrane are hypersensitive to treatments that disrupt 
cell wall synthesis (Zhang et al., 2016; He et al., 2018; McFar-
lane et al., 2021; Vellosillo et al., 2021), suggesting that in wild-
type cells, CESAs in the Golgi apparatus can be mobilized to 
help plants recover from cell wall stress. Together, these data 
suggest that CESA cycling between the Golgi and the plasma 
membrane does more than just regulate the degree of β-glucan 
chain polymerization and that this CESA cycling is required to 
maintain CESA activity.

Further analysis of mutants that are defective in CSC traf-
"cking from the Golgi to the plasma membrane (Zhang et al., 
2016; He et al., 2018; McFarlane et al., 2021; Vellosillo et al., 
2021) or CESA endocytosis (Bashline et al., 2015; Sánchez-
Rodríguez et al., 2018) may clarify the biological functions 
of CESA cycling. For example, a thorough analysis of the de-
gree of cellulose polymerization in these mutants could address 
whether CESA cycling, and therefore dual CESA localization 
to both the Golgi apparatus and the plasma membrane, is nec-
essary for regulating the degree of β-glucan chain polymeri-
zation.

Conclusion
Increasing interest in plant cell wall-derived bioproducts has 
spurred tremendous progress in plant cell wall synthesis re-
search. However, as new information is uncovered, new ques-
tions have arisen, and several long-standing questions remain 
unanswered. Key technical advances have pushed cell wall re-
search forward, including structural information on several cell 
wall synthesis enzymes, a set of antibodies raised against cell 
wall polysaccharides and glycoproteins, herbicides that specif-
ically a#ect cell wall synthesis, live-cell imaging protocols to 
track cell wall synthesis, and an inducible secondary cell wall 
synthesis system. Combining these advances with emerging 
technologies, such as synthetic glycan arrays to assess enzyme 
activity, the increasing diversity of sequenced plant genomes to 
identify cell wall synthesis enzymes not present in Arabidopsis, 
and CRISPR/Cas9 mutational approaches to assess in planta 
enzyme function, new advances and more questions are sure 
to follow.
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